

液晶模块说明书	SPEC NO	
YM12864A	REV NO	1.0

液晶显示模块 中文说明书

产品类型: 标准产品 产品系列号: YM12864A

128x64 图形点阵, 产品描述: #2### #20100 #

控制器: KS0108, 内置负压, LED背光

编写: Dexun Zou

审核: HCC

批准: Jingxi Yang

发行日期: 2002.8

大连佳显电子有限公司

地址:大连市沙河口区工华街17号

Tel: (0411)84619565 Fax: (0411)84619585

网址: http://www.good-lcd.com

邮箱: market@good-lcd.com

目录

- (一) 概述
- (二) 外形尺寸
- (三) 模块主要硬件构成说明
- (四) 模块的外部接口
- (五) 指令说明
- (六) 读写操作时序
- (七) 应用举例

一、概述

YM12864A 是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及 128×64 全点阵液晶显示器组成.可完成图形显示,也可以显示 8×4 个(16×16 点阵)汉字.

主要技术参数和性能:

- 1. 电源: VDD: +5V; 模块内自带-10V 负压,用于 LCD 的驱动电压。
- 2. 显示内容:128(列)×64(行)点
- 3. 全屏幕点阵
- 4. 七种指令
- 5. 与 CPU 接口采用 8 位数据总线并行输入输出和 8 条控制线.
- 6. 占空比 1/64
- 7. 工作温度: -10℃ ∽ +60℃, 存储温度: -20℃ ∽ +70℃

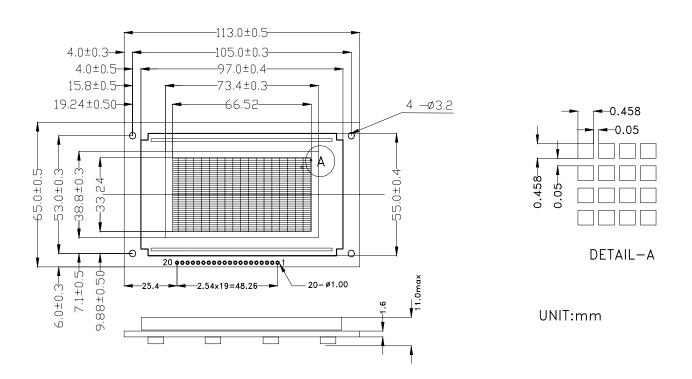
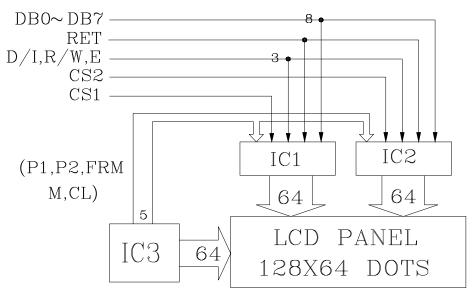

二、外形尺寸图

图 1

2. 外形尺寸图

表 1


ITEM	NOMINAL DIMEN	UNIT
模块体积	$113.0 \times 65.0 \times 11.0$	mm
视域	73.4×38.8	mm
行列点阵数	128×64	DOTS
点距离	0.508×0.508	mm
点大小	0.458×0.458	mm

三、模块主要硬件构成说明

结构框图:

注:IC2 控制模块的左半屏, IC1 控制模块的右半屏.

IC3 为行驱动器. IC1, IC 为列驱动器. IC1, IC2, IC3 含有如下主要功能器件. 了解如下器件有利于对 LCD 模块之编程.

1. 指令寄存器(IR)

IR 是用来寄存指令码,与数据寄存器寄存数据相对应. 当 D/I=1 时,在 E 信号下降沿的作用下,指令码写入 IR.

2. 数据寄存器(DR)

DR 是用来寄存数据的,与指令寄存器寄存指令相对应. 当 D/I=1 时,在 E 信号的下降沿作用下,图形显示数据写入 DR,或在 E 信号高电平作用下由 DR 读到 DB7 $^{\sim}$ DB0 数据总线. DR 和 DDRAM 之间的数据传输是模块内部自动执行的.

3. 忙标志:BF

BF 标志提供内部工作情况.BF=1 表示模块在进行内部操作,此时模块不接受外部指令和数据.BF=0时,模块为准备状态,随时可接受外部指令和数据.

利用 STATUS READ 指令,可以将 BF 读到 DB7 总线,从而检验模块之工作状态.

4. 显示控制触发器 DFF

此触发器是用于模块屏幕显示开和关的控制。DFF=1 为开显示(DISPLAY ON), DDRAM 的内容就显示在屏幕上, DDF=0 为关显示(DISPLAY OFF)。

DDF 的状态是指令 DISPLAY ON/OFF 和 RST 信号控制的。

5. XY 地址计数器

XY 地址计数器是一个 9 位计数器。高三位是 X 地址计数器,低 6 位为 Y 地址计数器,XY 地址计数器实际上是作为 DDRAM 的地址指针,X 地址计数器为 DDRAM 的页指针,Y 地址计数器为 DDRAM 的 Y 地址指针。

X 地址计数器是没有记数功能的,只能用指令设置。

Y地址计数器具有循环记数功能,各显示数据写入后,Y地址自动加1,Y地址指针从0到63。

6. 显示数据 RAM(DDRAM)

DDRAM 是存贮图形显示数据的。数据为 1 表示显示选择,数据为 0 表示显示非选择。DDRAM 与地址和显示位置的关系见 DDRAM 地址表(见第 6 页)。

7. Z 地址计数器

Z 地址计数器是一个 6 位计数器,此计数器具备循环记数功能,它是用于显示行扫描同步。当一行扫描完成,此地址计数器自动加 1,指向下一行扫描数据,RST 复位后 Z 地址计数器为 0。

Z 地址计数器可以用指令 DISPLAY START LINE 预置。因此,显示屏幕的起始行就由此指令控制,即 DDRAM 的数据从哪一行开始显示在屏幕的第一行。此模块的 DDRAM 共 64 行,屏幕可以循环滚动显示 64 行。

四、模块的外部接口

衣乙			
管脚号	管脚名称	LEVER	管脚功能描述
1	VSS	OV	电源地
2	VDD	5. 0V	电源电压
3	VO	_	液晶显示器驱动电压
4	D/I	H/L	D/I= "H",表示 DB7~DB0 为显示数据
			D/I= "L",表示 DB7 [~] DB0 为显示指令数据
5	R/W	H/L	R/W= "H", E= "H", 数据被读到 DB7~DB0
			R/W= "L", E= "H→L", DB7~DB0 的数据被写到 IR 或 DR
6	Е	H/L	使能信号: R/W= "L", E 信号下降沿锁存 DB7~DB0
			R/W="H", E="H" DRAM 数据读到 DB7~DB0
7	DB0	H/L	数据线
8	DB1	H/L	数据线
9	DB2	H/L	数据线
10	DB3	H/L	数据线
11	DB4	H/L	数据线
12	DB5	H/L	数据线
13	DB6	H/L	数据线
14	DB7	H/L	数据线
15	CS1	H/L	H:选择芯片(右半屏)信号
16	CS2	H/L	H:选择芯片(左半屏)信号
17	RET	H/L	复位信号, 低电平复位
18	VEE	-10V	LCD 驱动负电压
19	LED+	DC+5V	LED背光板正极
20	LED-	DC OV	LED背光板负极

五、指令说明

指令表:

表 3

指	指令码	1									功能
令	RW	DI	D7	D6	D5	D4	D3	D2	D1	D0	
显示 ON/OFF	0	0	0	0	1	1	1	1	1	1/0	控制显示器的开关,不影响 DDRAM 中数据和内部状态
显示 起始行	0	0	1	1	显示走(0…						指定显示屏从 DDRAM 中哪一行开始显示数据
设置 X 地址	0	0	1	0	1 1 X: 07				设置 DDRAM 中的页地址 (X 地址)		
设置 Y 地址	0	0	0	1	Y地址	(0~63))				设置地址(Y地址)
读状态	1	0	B U S Y		ON/ OFF	RST	0	0	0	0	RST 1:复位 0:正常 ON/OFF 1:显示开 0:显示 关 BUSY 0:READY 1:IN OPERATION

写 显 示 0 数据	1	显示数据	将数据线上的数据 DB7~DB0写入DDRAM
读 显 示 1 数据	1	显示数据	将数据线上的数据 DB7~DB0写入DDRAM

1. 显示开关控制(DISPLAY ON/OFF)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	0	0	1	1	1	1	1	D

D=1:开显示(DISPLAY ON) 意即显示器可以进行各种显示操作

D=0: 关显示(DISPLAY OFF) 意即不能对显示器进行各种显示操作

2. 设置显示起始行(DISPLAY START LINE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	1	1	A5	A4	А3	A2	A1	A0

前面在 Z 地址计数器一节已经描述了显示起始行是由 Z 地址计数器控制的。 $A5^{\sim}A0-6$ 位地址自动送入 Z 地址计数器,起始行的地址可以是 $0^{\sim}63$ 的任意一行。

例如:

选择 A5~A0 是 62, 则起始行与 DDRAM 行的对应关系如下:

DDRAM 行: 62 63 0 1 2 3 ··········· 28 29

屏幕显示行: 1 2 3 4 5 6 ********** 31 32

3. 设置页地址(SET PAGE "X ADDRESS")

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	1	0	1	1	1	A2	A1	A0

所谓页地址就是 DDRAM 的行地址,8 行为一页, 模块共 64 行即 8 页, $A2^A0$ 表示 0^7 页。读写数据对地址没有影响, 页地址由本指令或 RST 信号改变复位后页地址为 0。页地址与 DDRAM 的对应关系见 DDRAM 地址表。

4. 设置Y地址(SET Y ADDRESS)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	0	1	A5	A4	А3	A2	A1	A0

此指令的作用是将 $A5^A0$ 送入 Y 地址计数器,作为 DDRAM 的 Y 地址指针。在对 DDRAM 进行读写操作后,Y 地址指针自动加 1,指向下一个 DDRAM 单元。 DDRAM 地址表:

表 4

	-		CS2=1		_	CS1=1						
Y=	0	1	•••••	62	63	0	1	••••	62	63	行号	
X=	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	0	
	↓	↓	↓	\downarrow	↓							
0	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	7	
	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	8	
↓	↓	↓	↓	\downarrow	↓							
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	55	
X=7	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	56	
	↓	↓	\downarrow	↓	↓	↓	↓	↓	↓	↓	↓	
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	63	

5. 读状态(STATUS READ)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	1	BUSY	0	0N/0	RET	0	0	0	0
					FF					

当 R/W=1 D/I=0 时, 在 E 信号为 "H"的作用下,状态分别输出到数据总线(DB7~DB0)的相应位。

BF: 前面已叙述过(见 BF 标志位一节)。

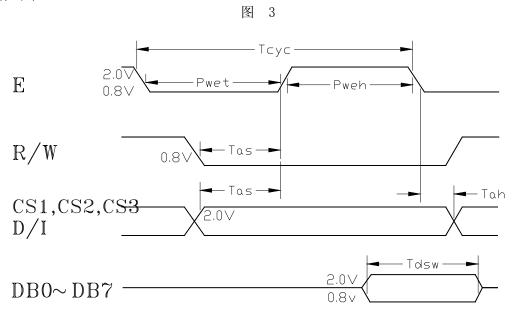
ON/OFF:表示 DFF 触发器的状态(见 DFF 触发器一节)。

RST: RST=1表示内部正在初始化,此时组件不接受任何指令和数据。

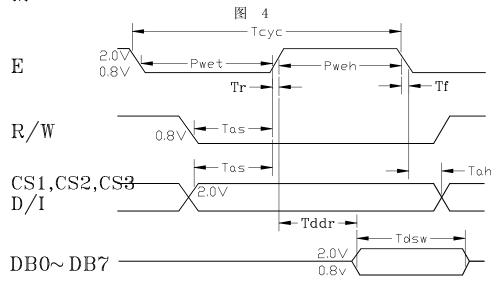
6. 写显示数据(WRITE DISPLAY DATE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	1	D7	D6	D5	D4	D3	D2	D1	DO

 $D7^{\sim}D0$ 为显示数据,此指令把 $D7^{\sim}D0$ 写入相应的 DDRAM 单元, Y 地址指针自动加 1。


7. 读显示数据(READ DISPLAY DATE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	1	1	D7	D6	D5	D4	D3	D2	D1	DO


此指令把 DDRAM 的内容 D7~D0 读到数据总线 DB7~DB0, Y 地址指针自动加 1。

六、读写操作时序

1. 写操作时序

2. 读操作时序

3. 读写时序参数表

表 5

名 称	符号	最小值	典型值	最大值	单位
E 周期时间	Tcyc	1000			ns
E高电平宽度	Pweh	450			ns
E低电平宽度 Pwel		450			ns
E 上升时间	Tr			25	ns
E下降时间	Tf			25	ns
地址建立时间	Tas	140			ns
地址保持时间	Tah	10			ns
数据建立时间	Tdsw	200			ns
数据延迟时间	Tddr			320	ns
写数据保持时间 Tdhw		10			ns
读数据保持时间	Tdhw	20			ns

七、应用举例

YM12864A 与单片机 8031 的一种接口如图 5. 所示:

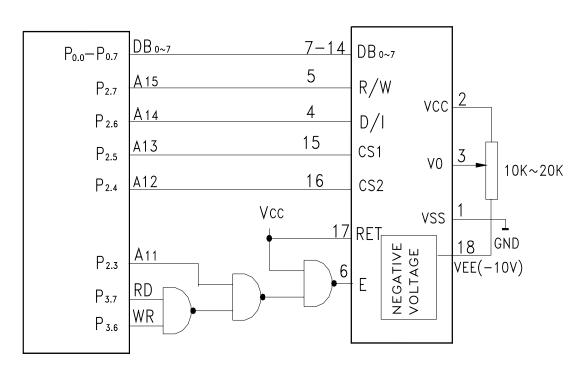


图 5

利用图 5 举例介绍编程实例

ORG 0000H

LJMP INITM

ORG 0100H

INITM: MOV SP, #67H ; SET STACK ADDRESS

MOV DPTR, #3800H ; SELECT CHIP1 AND CHIP2

MOV A, #3EH ; OFF DISPLAY

LCALL OUTI

LCALL MS40

LCALL MS40

LCALL MS40


```
MOV A, #3FH
                                  ; ON DISPLAY
      LCALL OUTI
      LCALL MS40
      LCALL MS40
      LCALL MS40
;显示"*"号
      MOV R3, #04H
                                  ; PAGE NUMBER (2X4=8PAGES)
      MOV A, #0B8H
                                  ; PAGEO
DISP1: PUSH ACC
      LCALL CHIN1
      POP ACC
       INC A
       INC A
      DJNZ R3, DISP1
        LCALL MS40
        LCALL MS40
        LCALL MS40
        LCALL MS40
        LCALL MS40
; 显示竖条
        MOV R3, #04H
        MOV A, #0B8H
DISP2:
        PUSH ACC
        LCALL CHIN2
        POP ACC
        INC A
        INC A
        DJNZ R3, DISP2
        LCALL MS40
        LCALL MS40
        LCALL MS40
        LCALL MS40
        LCALL MS40
; 显示横条
        MOV R3, #04H
        MOV A, #0B8H
DISP3:
        PUSH ACC
        LCALL CHIN3
        POP ACC
        INC A
        INC A
        DJNZ R3, DISP3
        LCALL MS40
        LCALL MS40
        LCALL MS40
        LCALL MS40
        LCALL MS40
;显示"XX电子"四个汉字
        MOV R3, #04H
        MOV A, #OB8H
DISP4:
        PUSH ACC
        LCALL CHIN4
        POP ACC
        INC A
        INC A
```

DJNZ R3, DISP4

```
LCALL MS40
         LCALL MS40
         LCALL MS40
         LCALL MS40
         LCALL MS40
        LJMP INITM
CHIN1: PUSH ACC
                                        ; PUT A (PAGE NUMBER) INTO STACK
        LCALL OUTI
                                        ; SET Y ADDRESS
        MOV A, #40H
        LCALL OUTI
        MOV R2, #32
LOAD1: MOV A, #55H
       LCALL OUTD
        MOV A, #OAAH
        LCALL OUTD
        DJNZ R2, LOAD1
           POP ACC
           INC A
           LCALL OUTI
           MOV A, #40H
           LCALL OUTI
           MOV R2, #32
   LOAD12: MOV A, #55H
           LCALL OUTD
           MOV A, #OAAH
           LCALL OUTD
           DJNZ R2, LOAD12
           RET
  CHIN2: PUSH ACC
                                           ; PUT A (PAGE NUMBER) INTO STACK
          LCALL OUTI
          MOV A, #40H
                                           ; SET Y ADDRESS
          LCALL OUTI
          MOV R2, #32
   LOAD2: MOV A, #00H
          LCALL OUTD
          MOV A, #OFFH
          LCALL OUTD
          DJNZ R2, LOAD2
          POP ACC
          INC A
          LCALL OUTI
          MOV A, #40H
          LCALL OUTI
          MOV R2, #32
  LOAD21: MOV A, #00H
          LCALL OUTD
          MOV A, #OFFH
          LCALL OUTD
          DJNZ R2, LOAD21
          RET
  CHIN3: PUSH ACC
                                           ; PUT A (PAGE NUMBER) INTO STACK
          LCALL OUTI
                                           ; SET Y ADDRESS
          MOV A, #40H
          LCALL OUTI
          MOV R2, #64
  LOAD3: MOV A, #55H
```

LCALL OUTD

```
DJNZ R2, LOAD3
          POP ACC
          INC A
          LCALL OUTI
          MOV A, #40H
          LCALL OUTI
          MOV R2, #64
 LOAD31: MOV A, #55H
          LCALL OUTD
          DJNZ R2, LOAD31
          RET
 CHIN4: PUSH ACC
         LCALL OUTI
         MOV A, #40H
         LCALL OUTI
          MOV R2, #64
          MOV R1, #00
          MOV DPTR, #CHINESE
  LOAD4: MOV A, R1
          MOVC A, @A+DPTR
          LCALL OUTD
          INC DPTR
          DJNZ R2, LOAD4
          POP ACC
          INC A
          LCALL OUTI
          MOV A, #40H
          LCALL OUTI
          MOV R2, #64
 LOAD41: MOV A, R1
          MOVC A, @A+DPTR
          LCALL OUTD
          INC DPTR
          DJNZ R2, LOAD41
          RET
 MS40:
          MOV R7, #0E8H
 MS2:
          MOV R6, #OFFH
 MS1:
          DJNZ R6, MS1
          DJNZ R7, MS2
 ; OUT INSTRCTION FOR CHIP1 AND CHIP2
 OUTI: PUSH DPH
       PUSH DPL
       MOV DPTR, #3800H
       MOVX @DPTR, A
       POP DPL
       POP DPH
       RET
OUTD: PUSH DPH
       PUSH DPL
       MOV DPTR, #7800H
       MOVX @DPTR, A
       POP DPL
       POP DPH
       RET
CHINESE:; (PAGEO)
```

DB 40H, 40H, 42H, 44H, 58H, 0C0H, 40H, 7FH, 40H, 0C0H, 50H, 48H, 46H, 64H, 40H, 00

第 11 页

DB 20H, 20H, 20H, 20H, 20H, 20H, 0AOH, 7FH, 0AOH, 20H, 20H, 20H, 20H, 30H, 20H, 00 DB 00, 0F0H, 90H, 90H, 90H, 0FFH, 90H, 90H, 90H, 90H, 0F8H, 10H, 00, 00, 00 DB 80H, 80H, 82H, 82H, 82H, 82H, 82H, 0E2H, 0A2H, 92H, 8AH, 87H, 82H, 0C0H, 80H, 00; (PAGE1)

DB 00, 80H, 40H, 20H, 18H, 07H, 00, 00, 00, 3FH, 40H, 40H, 40H, 40H, 70H, 00
DB 00, 40H, 40H, 20H, 10H, 0CH, 03H, 00, 01H, 06H, 08H, 10H, 20H, 60H, 20H, 00
DB 00, 0FH, 04H, 04H, 04H, 04H, 7FH, 84H, 84H, 84H, 84H, 8FH, 80H, 0FOH, 00, 00
DB 00, 00, 00, 00, 00, 40H, 80H, 7FH, 00, 00, 00, 00, 00, 00, 00, 00